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Abstract

The paper explores thermodynamic aspect of modelling two-phase systems by the methods of irre-

versible thermodynamics in both classical (CIT) and extended (EIT) formulation. The conservation laws

for two-phase model-continuum are derived. Then, the entropy production is analysed for two-fluid and

homogeneous systems. Different equations of state are taken into consideration, namely that corresponding

to the accompanying equilibrium state of physical element and more complex resulting from EIT. Obtained

expressions for rate of entropy production per unit volume allow to identify the dissipative mechanisms in
the two-phase system and suggest the forms of phenomenological relations to be adopted in the constitutive

equations.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The fundamentals of two-phase flow through channels are still in dispute. A study of the lit-
erature of the subject (Nigmatulin, 1991; Ishii, 1975; Delhaye et al., 1981; Bergles et al., 1981; Hsu
and Graham, 1968; Ginoux, 1978; Hewitt and Hall-Taylor, 1970; Tong, 1965) shows that the
systems of equations now in use can be classified under two broad headings: mixture models and
two-fluid models. They are based on two distinct descriptions of the two-phase system at ‘‘local’’
scale. Two-fluid models are currently most frequently used. Several models are derived from these.

International Journal of Multiphase Flow 28 (2002) 1983–2005
www.elsevier.com/locate/ijmulflow

*
Corresponding author. Tel.: +32-10-47-2210; fax: +32-10-45-2692.

E-mail address: giot@term.ucl.ac.be (M. Giot).
1 Deceased.

0301-9322/02/$ - see front matter � 2002 Elsevier Science Ltd. All rights reserved.

PII: S0301-9322(02)00107-6

mail to: giot@term.ucl.ac.be


Among them there is the model based on the velocity of the centre of volume from which we
can derive the drift flux model expressed in terms of the flux velocity (Ishii, 1975). In particu-
lar this model reduces to the homogeneous model when the liquid and vapour velocities are
equal. The above mentioned models are well known for years and widely described in the liter-
ature. Many papers are devoted to the derivation of the balance equations for these models.
Relatively few are intended to develop the thermodynamic aspects of modelling two-phase sys-
tems. The present paper explores the potential of the so-called irreversible thermodynamics. In
this respect we shall follow the exposition of the classical irreversible thermodynamics (CIT) by
Meixner and Reik (1959), and of the extended irreversible thermodynamics (EIT) by Jou et al.
(2001).

Section 2 introduces some basic aspects of a model considering a coexistence of two distinct
phases in any point. This model is proposed for two-phase systems with particles, in particular
when non-equilibrium effects are important. For such cases we define the concept of an accom-
panying equilibrium. Some definitions are given in Section 3. We take account of the inherently
non homogeneous nature of the flow system and replace it in Section 4 by a physically equivalent
continuum through the application of the Euler–McLaurin approximation of a sum by an inte-
gral. In Section 5, we formulate the conservation laws in terms of this model-continuum. The
Gibbs equation for the system is written for different equations of state, namely that corre-
sponding to the accompanying equilibrium state of a physical element, as proposed by Bataille
and Kestin (1975, 1977), Kestin (1979) and other much more complex resulting from EIT. The
physics allows us to determine the thermodynamic variables which describe the accompanying
equilibrium state as well as the original non-equilibrium state. The explicit expression for the rate
of entropy production (Section 6) identifies the dissipative mechanisms and suggests the forms of
the phenomenological relations to be adopted (Section 7). In Section 8, we show that the ex-
pressions of the entropy production of the homogeneous models derived from both the two-fluid
models and the mixture models are identical, contrary to the expression for the reversible entropy
source terms. Finally, constitutive equations are derived from EIT considerations (Section 10),
and two examples of the usefulness of their use are given in Section 11. The paper ends with some
conclusions about the future of two-phase flow modelling.

2. Fluid volumes and local equilibrium

Two-phase systems can be subdivided into three main categories:

• particulate fluid flows from submicronic to large diameter particles (several millimeters),
• separated flows where the two phases are separated by a smooth or wavy interface,
• churn turbulent flows whose structure is random.

The first two categories can be subjected to detailed modelling including for example condensa-
tion and fragmentation phenomena which are typical of particulate fluid flows, wave amplitude
and frequency in the case of separated flows. Particles can also be present in each phase of a
separated two-phase flow due to entrainment of droplets in the gas phase or nucleate boiling in the
liquid film.
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To model separated flows––like annular flows––the macroscopic domain is divided into single-
phase macroscopic subvolumes separated by interface surfaces. Local instantaneous equations are
written for each phase separately, with jump conditions at the interfaces. At local scale (say the
volume of observation of a small probe), there is only one phase present at a time. Averaging over
time, or making ensemble averages lead to coexisting phases at any point of the domain. This is
the philosophy which is behind the two-fluid model. The classical thermodynamic assumption of
local equilibrium is easily extended to two-fluid models, since each phase is treated as a contin-
uum: the relaxation times of the mechanical and thermal non-equilibriums of each phase are
related to the mechanical and thermal diffusions at the molecular or Kolmogorov scales, and are
thus very short compared with the scale at which the flow is physically observed. One can thus
define and measure a temperature and a velocity for each phase at each point as a function of the
measured time. A hydrodynamic and a thermodynamic pressure can also be defined for each
phase as it is done for single-phase fluids.

In this paper we consider particulate flows for which mixture models can be proposed. Ac-
cording to the classical approach, we consider a flow volume V , which from the thermodynamic
point of view is a closed system. It contains fluid particles (at least one) and a part of the sur-
rounding continuum phase, filling a simply connected space. Due to vaporization and/or con-
densation, the masses ml and mg of the two phases are not constant, even if the total mass,

m ¼ ml þ mg; ð1Þ
of the flow volume is constant. The variable volume V can be subdivided into two variable
subvolumes

V ¼ V l þ V g: ð2Þ
The two subvolumes are separated by interfacial areas which can be modelled as a third region

of space including interfacial properties and energy. In this paper we neglect the surface tension
and the associated surface energy and describe the state of the two-phase system in a unified
manner regardless the size of the particles. This restricts the applicability of the model to par-
ticulate systems where the fluid particles have a diameter larger than 1 lm. Liquid and vapour can
thus be regarded as two co-existing thermodynamic subsystems, and in this respect, they represent
a weakly interacting mixture as defined by Bataille and Kestin (1979).

The situation where the time or space averaged velocities of the liquid �wwl
i and vapour �wwg

i over
the volume V are different introduces the mechanical non-equilibrium. Here, we distinguish be-
tween the non-equilibrium state and its accompanying equilibrium state. The latter arises hypo-
thetically from the former by isolating the fluid volume suddenly and maintaining the barycentric
velocity constant. Then all the intensive properties (temperature, pressure, chemical potentials)
and the velocities evolve towards uniformity inside the system, and its entropy increases. The
original non-equilibrium state and the accompanying equilibrium state are characterized by the
same global extensive variables mass, volume and internal energy. The process leading to equi-
librium involves internal fluxes of mass, momentum and energy which are beyond external
control, and induce coupled relaxation times.

The calculation of the entropy of the initial non-equilibrium fluid volume cannot be done
without introducing the concept of local equilibrium. In the model that we propose here, the local
volumes, because of their two-phase nature, are much larger than in the single-phase systems. For
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example, in a bubbly flow, the smallest two-phase system consists of a vapour bubble surrounded
by some volume of liquid. Irreversible processes of vaporization or condensation imply T l 6¼ T g,
and these temperatures have to be measured at a certain distance from the interface, outside of the
thermal boundary layer. As a result the relaxation times h in two-phase systems are much larger
than those in one-phase systems even of a dozen orders of magnitude. Such a long relaxation time
even of 1 s was evaluated by Bilicki et al. (1990) basing on the Moby Dick experimental results by
R�eeocreux (1974) and confirmed theoretically by Bilicki et al. (1996).

In our two-phase system we must also recognize the existence of an internal deformation
variable, the mass transferred inside the system between the two phases. The chemical work ex-
pressed as the product of the chemical potential acting on the ‘‘disappearing’’, as well as ‘‘ap-
pearing’’ masses dml and dmg, must be included in the balance. In the hypothetical process of
creating the accompanying equilibrium state from the non-equilibrium state an internal variable,
like dml=m, is assumed to have been constrained by an outside agent, and the mass exchange is
assumed performed reversibly at the cost of transferring work to the surroundings (De Groot and
Mazur, 1962, Chapters 21 and 22).

3. Definitions

The proportions of vapour and liquid present in the closed system can be described either by
the volumetric fractions

/l ¼ V l=V and /g ¼ V g=V with /l þ /g ¼ 1; ð3aÞ

or by the mass fractions

cl ¼ ml=m and cg ¼ mg=m with cg þ cl ¼ 1: ð3bÞ

In the theory of two-phase flow, volumetric fractions are preferred and

/ � /g with /l ¼ 1� / ð4Þ

is called the void fraction. We favour the notation of Eq. (3a) because subsequent equations ac-
quire a more symmetric form. We shall make substitution (4) only in the working equations. It is
clear that the void fraction / � /g and the frequently employed dryness fraction

x � cg with cl ¼ 1� x ð5Þ

are not independent. It is easy to show that

x ¼ /qg

qlð1� /Þ þ qg/
or / ¼ 1

1þ ð1� xÞql=xql
: ð6Þ

Here

ql ¼ ml

V l
and qg ¼ mg

V g
ð7Þ

are tabulated equilibrium densities of the substance.
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All extensive quantities of system V can be expressed in terms of the properties of the two co-
existing subsystems. In this connection it is usual to introduce specific quantities per unit mass. In
particular,

q ¼ /lql þ /gqg; ð8Þ
or for any specific quantity w ¼ W=m per unit mass

qw ¼ /lqlwl þ /gqgwg; ð9Þ
here w may be interpreted as internal energy per unit mass u, specific enthalpy h, specific entropy s,
etc. As far as the non-equilibrium state is concerned, the properties q and w calculated above
represent mean values taken over volume V . It is emphasized that the same procedure cannot be
applied to the intensive properties. However, in the expression for the second part of the Second
Law (Clausius–Duhem inequality), we have to introduce the reference temperature Tref . This
temperature is derived from the fundamental equation of state for the two-phase liquid vapour
system (see De Groot and Mazur, 1962; Bataille and Kestin, 1975).

In the case of thermodynamic and mechanical equilibrium, the total entropy is the function

S ¼ SðU ; V ;ml;mgÞ: ð10Þ
In the non-equilibrium case, provided that the concept of equation of state is extended,

S ¼ SðU ; V ;ml;mg; a1; . . . ; anÞ; ð11Þ
and mixture temperature and mixture pressure are defined by

T,
oU
oS

� �
V ;ml;mg;a1;...;an

; P,� oU
oV

� �
S;ml;mg;a1;...;an

:

The Gibbs equation can be written

TdS ¼ dU þ PdV � lldml � lgdmg þ T
Xn

i¼1

oS
oai

� �
U ;V ;ml;mg;aj

dai; j 6¼ i: ð12Þ

The additional internal variables ai are the local mass flux densities, heat flux densities, and shear
stresses in the two-phase mixture.

The preceding two terms describe the reversible transfer of masses, dml and dmg with

dml þ dmg ¼ 0; ð13Þ

between the two subsystems, the symbols ll and lg denoting the chemical potentials of the two
phases. These two quantities may or may not be equal. The Gibbs equation (12) clearly identifies
the thermodynamic variables which enter the system�s equation of state. If we approximate the
system by one in which surface tension and the possible appearance of metastable states are
neglected, we may equate the two chemical potentials. Then the corresponding terms cancel each
other in view of Eq. (13). In the present model we shall make this simplification, but retain the last
terms in our equation to preserve generality. In the absence of surface tension and metastability,
pressure P is a unique function of temperature T in view of the equality of the chemical potentials
of both phases.
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For the accompanying equilibrium state, Gibbs equation per unit mass becomes

Trefds ¼ du þ Pdð1=qÞ � lldcl � lgdcg; ð14Þ
where the mass fractions cl and cg have been introduced.

Finally it is worth noticing that the system is compressible due to the compressibility of the
vapour as well as to the exchange of mass between the phases. In most cases the two phases taken
separately are either practically incompressible (liquid) or compressible with very short relaxation
times (saturated vapour or metastable vapour). However, the whole system exhibits a relaxation
time which may become long if the rate of evaporation or condensation is not very large, or is
significantly affected by surface tension. This means that the system as a whole may become the
seat of viscoelastic effects which can manifest themselves in the form of non-zero bulk viscosity.

4. The present model

The model developed here corresponds to an idealised tomographic method where the fluid
volume is subdivided into a large but finite number of cells, the volumetric fraction of each phase
being simultaneously determined in all cells. We subdivide thus the whole system of volume V into
k elements Vi . This leads to a discrete distribution of extensive ðVi ;ml

i;m
g
i ; . . .Þ, specific ðql

i;q
g
i ; h

l
i;

hgi ; . . .Þ and intensive properties ðTi; Pi;ll
i;l

g
i ; . . .Þ, as well as velocities ð~wwl

i;~ww
g
i Þ throughout volume

V . The instantaneous value of any extensive property of phase a, WaðtÞ for the whole system is
equal to the sums:

WaðtÞ ¼
Xk

i¼1

qa
i /

a
i w

a
i Vi ¼

Xk

i¼1

ca
i qiw

a
i Vi : ð15aÞ

The instantaneous value of any extensive property WðtÞ for the whole system is equal to the sum

WðtÞ ¼
Xk

i¼1

qiwiVi ¼
X

a

WaðtÞ; ð15bÞ

where qi and wi are the instantaneous mean specific quantities introduced in Section 3.
Further, for each Vi , we assign the value of all its parameters to a particular point inside Vi , for

example its centre of mass.
We now apply the Euler–McLaurin formula to Eqs. (15a) and (15b), and obtain

WaðtÞ ¼
Z

V tðtÞ
qað~xx; tÞ/að~xx; tÞwað~xx; tÞdV þ Ra; ð16aÞ

WðtÞ ¼
Z

V tðtÞ
qð~xx; tÞwð~xx; tÞdV þ R; ð16bÞ

where Ra and R are the remainders.
The functions qað~xx; tÞ, /að~xx; tÞ, wað~xx; tÞ, qð~xx; tÞ, and wð~xx; tÞ are continuous at every point~xx of the

transformed space V tðtÞ, except for any subspace of measure zero (shock fronts). A necessary
condition to make the remainders Ra and R negligible:

Ra ffi 0 and R ffi 0
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is to have a large number k of elements Vi, in other words

Vi 	 V :

Then one can accept the approximations:

WaðtÞ ffi
Z

V tðtÞ
qað~xx; tÞ/að~xx; tÞwað~xx; tÞdV ð17aÞ

and

WðtÞ ffi
Z

V tðtÞ
qð~xx; tÞwð~xx; tÞdV : ð17bÞ

Moreover, the accuracy of the void fraction distribution and of the density distribution of each
phase can be checked at the scale V t by the expressions:

If wa
i � vi; then V a ¼

Z
V t

/að~xx; tÞdV and
X

a

V a ¼ V t: ð18aÞ

If wa
i � 1; then ma ¼

Z
V t

qað~xx; tÞdV and
X

a

ma ¼ m: ð18bÞ

However, this is no guarantee for the uniqueness of the functions /að~xx; tÞ and qað~xx; tÞ at any
particular point inside V t, neither the centres of masses of the Vis or any other points: it remains
limited by the finite number of bubbles or droplets inside the fluid volume.

Another requirement for the continuous functions which are built on the initial discrete dis-
tributions, and especially for the specific values of extensive properties, is that their averages
calculated over each Vi be equal to the values prescribed for Vi , by the discrete distribution:

qiwi ¼
1

Vi

Z
Vi

qð~xx; tÞwð~xx; tÞdV : ð19Þ

Whatever the number of bubbles or drops in the fluid volume, the local volumes remain larger
than those used in single-phase flow, and a fortiori the volume of a ‘‘fluid particle’’ on which the
continuum mechanics is based.

From Eq. (18a) one can deduce an instantaneous value of the void fraction, averaged over V :

/g ¼ V g

V
:

This parameter differs from the void fraction used in the two-fluid model, where combined time
and volume averages are used. However the ergodic theorem enables to make ensemble averages
which are equivalent to time averages, and we suggest to apply this method to the quantities
defined in the present model.

The continuum model of our system is similar to that introduced in the classical theory (Bataille
and Kestin, 1979; Wallis, 1969), and the obvious assumption is made that the conservation laws
apply. The only difference now is that we shall write separate conservation equations for the
vapour and liquid in order to introduce their densities and volume fractions explicitly, which leads
to the philosophy of the two-fluid model.
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5. Conservation equations

In order to write down the conservation laws for the model-continuum, it is convenient to
introduce the indicial notation and to adopt the Einstein summation convention. The two phases
will be distinguished by l or g, as before, but to avoid repetition we shall use the superscript a to
denote any one of them. No summation convention is implied with respect to the superscripts, and
a summation sign will always be displayed. Thus, for example, cawa

i means either clwl
i or cgwg

i , butP
cawa

i means clwl
i þ cgwg

i .
In the transformed volume V tðtÞ we have defined the continuous approximation functions

describing the distributions of liquid and vapour velocities wl
iðxk; tÞ, wg

i ðxk; tÞ, the centre-of-mass
velocity wiðxk; tÞ, the volume fraction of liquid /lðxk; tÞ and vapour /gðxk; tÞ, the densities of liquid
qlðxk; tÞ and vapour qg, etc. In every point there are two coexisting phases with their sources of
mass Ca, momentum Ma

i and energy Ea. Now we are in a position to constitute the model by the
following set of conservation equations.

5.1. Mass balance equations

oqa/a

ot
þ oðqa/awa

i Þ
oxi

¼ Ca; ð20Þ

with

X2
a¼1

Ca ¼ 0: ð21Þ

We introduce the material fluxes corresponding to each phase J a
i defined as

J a
i ¼ qa/aðwa

i � wiÞ; ð22Þ

satisfying equation

X2
a¼1

J a
i ¼ 0: ð23Þ

In the flux J a
i we recognize the so called diffusive velocity

~wwa
i ¼
def wa

i � wi; ð24Þ

which describes the actual velocity of the selected phase with respect to the centre-of-mass velocity
wi,

wi ¼
X2
a¼1

cawa
i ¼

P2

a¼1 qa/awa
i

q
¼
P2

a¼1 qa/awa
iP2

a¼1 qa/a
: ð25Þ

Using the material fluxes it is possible to present the mass conservation equation (20) in another
form
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q
dca

dt
þ oJ a

i

oxi
¼ Ca; ð26Þ

where the material derivative is taken at the velocity of the centre-of-mass.

5.2. Momentum and kinetic energy equations

The linear momentum balance equation for each phase takes the form

oqa/awa
i

ot
þ oðqa/awa

i w
a
kÞ

oxk
¼ qa/agi �

o/aP a
ik

oxk
þ Ma

i ; ð27Þ

with

X2
a¼1

Ma
i ¼ 0: ð28Þ

Introducing the concept that the source term can be divided into a contribution f1 from the influx
of mass Ca, and f2 which is connected to the molecular and turbulent exchange of momentum
between phases we are able to rewrite Eq. (27) in the following form:

oqa/awa
i

ot
þ oðqa/awa

i w
a
kÞ

oxk
¼ qa/agi �

o/aP a
ik

oxk
þ Cawa

i þ f2: ð29Þ

The LHS of Eq. (29) can be written:

wa
i

oqa/a

ot

�
þ oqa/awa

k

oxk

�
þ qa/a ow

a
i

ot

�
þ qa/awa

k

owa
i

oxk

�

or

wa
i C

a þ qa/a dw
a
i

dt

����
a

:

A special form of the momentum equation is the kinetic energy balance which comes from Eq.
(29) by multiplying both sides by velocity wa

i

qa/awa
i

dwa
i

dt

����
a

¼ qa/agiwa
i � wa

i

o/aP a
ik

oxk
þ f2wa

i : ð30Þ

5.3. Energy balance equations

The total energy balance for each phase can be presented in the following form:

oqa/aEa

ot
þ oqa/aEawa

i

oxi
¼ qa/agiwa

i �
o

oxi
/aP a

ikw
a
k

�
þ /aqa

i

�
þ ea; ð31Þ
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with

X2
a¼1

ea ¼ 0; ð32Þ

where

Ea ¼ ua þ ðwa
i Þ

2

2
: ð33Þ

We can go following the same way as we did with the momentum equation dividing the term ea

into three terms namely the total energy influx due to mass transfer, the power of the viscous and
turbulent forces f2wa

i corresponding to momentum exchange, and the residual internal energy
source /aqaY a due to radiation, Joule�s effect, chemical or nuclear reactions, etc.

oqa/aEa

ot
þ oqa/aEawa

i

oxi
¼ qa/agiwa

i �
o

oxi
ð/aP a

ikw
a
k þ /aqa

i Þ þ Ca ðwa
i Þ

2

2

 
þ ua

!
þ f2wa

i þ /aqaY a:

ð34Þ
The LHS of Eq. (31) can be written:

Ea oqa/a

ot

�
þ oqa/awa

i

oxi

�
þ qa/a oEa

ot

�
þ wa

i

oEa

oxi

�

or

EaCa þ qa/a dE
a

dt

����
a

;

and Eq. (31) becomes

qa/a dE
a

dt

����
a

¼ qa/agiwa
i �

o

oxi
ð/aP a

ikw
a
k þ /aqa

i Þ þ f2wa
i þ /aqaY a: ð35Þ

By subtracting Eq. (30) from Eq. (35), we obtain:

qa/a du
a

dt

����
a

¼ �/aP a
ij

owa
j

oxi
� o/aqa

i

oxi
þ qa/aY a: ð36Þ

5.4. Entropy balance equations

We can write the entropy balance equation for each phase

oqa/asa

ot
þ oqa/awa

i s
a

oxi
¼ oJsa

i /a

oxi
þ raqa/a; ð37Þ

or in the form of the total derivative

qa/a ds
a

dt

����
a

¼ oJ a
i /

a

oxi
þ raqa/a � Casa; ð38Þ
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where the last two terms describe the sources of the entropy. One of them, Casa is reversible and
connected to the mass production to the flow volume V aðtÞ whereas another, raqa/a is caused by
irreversible processes and is always positive because it has to obey the second law of thermody-
namics.

6. Entropy production according to classical irreversible thermodynamics (CIT)

Here we introduce the entropy equation which is a local form of the Gibbs equation. We can
derive it from the equation of state of the phase a

sa ¼ saðua; va; caÞ:
Hence, in absence of surface tension we have:

dsa

dt

����
a

¼ 1

T a

dua

dt

����
a

þ P
T a

dva

dt

����
a

� la

caT a

dca

dt

����
a

: ð39Þ

This last term is unconventional in the sense that the variation of the entropy of each phase due
the change of the composition of the mixture is measured at the velocity of the phase and not at
the velocity of the mixture. Nevertheless, the contributions are summed up in the next step.

Multiplying (39) by qa/a we can rewrite this equation in the form

qa/a ds
a

dt

����
a

¼ qa/a

T a

dua

dt

����
a

þ qa/aP
T a

dva

dt

����
a

� laq
T a

dca

dt

����
a

: ð40Þ

Substituting dua=dtja by the RHS of Eq. (36) we get

qa/a ds
a

dt

����
a

¼ �
/aP a

ij

T a

owa
j

oxi
� 1

T a

o/aqa
i

oxi
þ 1

T a
qa/aY a þ qa/aP

T a

dva

dt

����
a

� laq
T a

dca

dt

����
a

: ð41Þ

Having in mind that the tensor P a
ij can be subdivided into spheric and deviatoric parts

P a
ij ¼ Pdij þ Pva

ij ; Pva

ij ¼ Pva
dij þ P

_va

ij ; ð42aÞ

where

Pva ¼ Pha � P ; ð42bÞ
then

P a
ij ¼ Pha

dij þ P
_va

ij : ð42cÞ

we can further rearrange Eq. (41)

qa/a ds
a

dt

����
a

¼ �
/aP

_va

ij

T a

owa
j

oxi
� /aPha

T a

owa
i

oxi
� /aqa

i

ðT aÞ2
oT a

oxi
� o

oxi

/aqa
i

T a

� �
þ 1

T a
qa/aY a

þ qa/aP
T a

dva

dt

����
a

� laq
T a

dca

dt

����
a

: ð43Þ
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Making use of the mass balance equation (20) one obtains

qa/a ds
a

dt

����
a

¼ �
/aP

_va

ij

T a

ow
_a

j

oxi
þ Pha

Ca

T aqa
� Pha

T a

d/a

dt

����
a

� /aqa
i

ðT aÞ2
oT a

oxi
� o

oxi

/aqa
i

T a

� �

þ 1

T a
qa/aY a � laq

T a

dca

dt

����
a

� qa/aðPha � P Þ
T a

dva

dt

����
a

: ð44Þ

Looking at Eq. (44) through a prism of Eq. (38) it is obvious that some terms like

ra
2 ¼ �/a

T a
P
_va

ij

owa
i

oxj
P 0; ð45Þ

ra
1 ¼ � /aqa

i

ðT aÞ2
oT a

oxi
P 0; ð46Þ

ra
0 ¼ �/aqa

T a
ðPha � PÞ dv

a

dt

����
a

P 0; ð47Þ

are recognised as the entropy production terms, always positive, and /aqa
i =T

a corresponding to
the entropy flux Jsa

i both within the single phase. According to CIT owa
i =oxj is recognised as the

generalised force conjugated with the thermodynamic flux P
_va

ij , force oT a=oxi is conjugated with
flux qa

i , and force dva=dtja with flux ðPha � P Þ as it is well known in single-phase fluid mechanics.
At the moment we cannot say anything about other terms contained in (44) except for the re-
versible source term ð1=T aÞqa/aY a. Another picture appears if we consider the entropy production
analysis in terms of the mixture model where there is an interaction between the phases at any
point of the domain occupied by the two-phase medium. In order to do that we have to sum up
the entropy equations of liquid and vapour written with respect to reference velocity of both
phases, say barycentric velocity.

Starting point for this procedure is that the entropy for the two-phase mixture is expressed as

s ¼ clsl þ cgsg

and the substantial derivative with respect to the barycentric velocity is:

ds
dt

¼
X

a

dcasa

dt
¼
X

a

ca ds
a

dt

����
a

�
þ sa dca

dt

����
a

� ~wwa
i

ocasa

oxi

�
: ð48Þ

The entropy balance introduced for each phase (38) now written for both phases with respect to
the barycentric velocity takes a form

ds
dt

¼
X

a

1

q
oJsa

i /a

oxi

�
þ raca � Casa

q
þ sa dca

dt

����
a

� ~wwa
i

ocasa

oxi

�
; ð49aÞ

ds
dt

¼ 1

q
oJ sa

i

oxi
þ r þ w; ð49bÞ

where

r ¼ cgrg þ clrl
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and the reversible source of the entropy w is equal to

w ¼
X

a

�
� Casa

q
þ sa dca

dt

����
a

� ~wwa
i

ocasa

oxi

�
: ð49cÞ

Using Eq. (44), Eq. (48) becomes:

ds
dt

¼
X

a

(
� ca

qaT a
P
_va

ij

owa
j

oxi
� Pha

Ca

T aqqa
þ Pha

qT a

d/a

dt

����
a

� caqa
i

qaðT aÞ2
oT a

oxi
� 1

q
o

oxi

/aqa
i

T a

� �

þ caY a

T a
� la

T a

�
� sa

�
dca

dt

����
a

� caðPha � P Þ
T a

dva

dt

����
a

� ~wwa
i

ocasa

oxi

)
: ð50Þ

Basing on the mass balance equation (20) the term before the last in the above equation can be
further developed; indeed, Eq. (20) can be written:

/a

dqa

dt

����
a

þ qa d/a

dt

����
a

þ qa/a ow
a
i

oxi
¼ Ca: ð51Þ

Hence,

�ðPha � P Þca

T a

dva

dt

����
a

¼ ðPha � PÞca

T aðqaÞ2
dqa

dt

����
a

¼ �ðPha � PÞ
T aq

d/a

dt
� ðPha � P Þ

T aq
~wwa

i

o/a

oxi
� ðPha � P Þ/a

T aq
owa

i

oxi
þ ðPha � PÞCa

T aqaq
:

ð52Þ
Then the entropy balance equation can be written

ds
dt

¼
X

a

8<
:�

caP
_va

ij

qaT a

owa
j

oxi
� ca

qaT a
ðPha � P Þ ow

a
i

oxi
� PCa

T aqaq
þ P

T aq
d/a

dt
þ P

T aq
~wwa

i

o/a

oxi

� 1

q
o

oxi

/aqa
i

T a

� �
� caqa

i

qaðT aÞ2
oT a

oxi
þ caY a

T a
� la

T a

�
� sa

�
dca

dt
� la

T a
~wwa

i

oca

oxi
� ca ~wwa

i

osa

oxi

9=
;: ð53Þ

It is worth noting that RHS of Eq. (53) consists of the divergence of the entropy fluxes
ð1=qÞðoJ sa

i =oxiÞ, the reversible entropy sources wa and of the entropy production rate terms ra.
Comparing (53) with (49a)–(49c) it is easy to recognise that

1

q
oJ a

i

oxi
¼ � 1

q
o

oxi

/aqa
i

T a

� �
; ð54aÞ

wa ¼ � PCa

T aqaq
þ sa dca

dt
þ caY a

T a
þ P

T aq
~wwa

i

o/a

oxi
� la

T a
~wwa

i

oca

oxi
� ca ~wwa

i

osa

oxi
; ð54bÞ

cara ¼ � ca

qaT a
P
_va

ij

owa
j

oxi
� ca

qaT a
ðPha � P Þ ow

a
i

oxi
þ P

T aq
d/a

dt
� /aqa

i

qðT aÞ2
oT a

oxi
� la

T a

dca

dt
: ð54cÞ
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It is interesting to mention that the reversible entropy source terms Eq. (54b) in the present model
originate from two different reasons. The two first terms represent a reversible transport of en-
tropy due to phase change, i.e. evaporation or condensation. The last three terms are due to the
frame change: the entropy is balanced with respect to barycentric velocity wi instead of the local
phase velocity wa

i ; therefore, the last three terms contain the diffusive velocity. The expressions for
the entropy production rate contain three parts of different tensorial rank,

r ¼ r2 þ r1 þ r0; ð55Þ
and satisfy the condition

r P 0 ð56Þ
given in (45)–(47). Now for the system containing two phases exchanging mass, momentum and
energy, the source terms include some additional contributions, namely

r2 ¼ � cg

qgT g
P
_vg

ij

owg
i

oxj
� cl

qlT l
P
_vl

ij

owl
i

oxj
P 0; ð57aÞ

r1 ¼ � cgqgi
qgðT gÞ2

oT g

oxi
� clqli

qlðT lÞ2
oT g

oxi
P 0; ð57bÞ

r0 ¼ � cg

qgT g
ðPhg � PÞ ow

g
i

oxi
� cl

qlT l
ðPhl � P Þ ow

l
i

oxi
þ P

q
T l � T g

T gT l

d/g

dt
� lg

T g

�
� ll

T l

�
dcg

dt
P 0:

ð57cÞ

7. The phenomenological assumptions

The final form of the entropy production rate contained in Eqs. (57a)–(57c) allows us to
identify physically justified generalized forces and their conjugate fluxes. We make the assumption
that our model-continuum is isotropic, and this means that the generalized fluxes depend only on
forces of equal tensorial rank, given that the second-order tensors are traceless. The first term, r2,
is the scalar product of two traceless second-order tensors, the second term, r1, contains scalar
products of vectors, and the last term, r0, contains only products of scalar quantities.

In physical terms, this denotes the absence of coupling between the forces and fluxes of the
three categories, and Eq. (56) implies

r0 P 0; r1 P 0; r2 P 0; ð58Þ
separately.

Basing on CIT (Kestin, 1979), we shall assume that linear phenomenological rate-equations are
justified in our case. We can represent them by the following equations:

P
_vg

ij ¼ L21

1

T g

owg
i

oxj
þ L22

1

T l

owl
i

oxj
; ð59aÞ

P
_vl

ij ¼ L23

1

T g

owg
i

oxj
þ L24

1

T l

owl
i

oxj
; ð59bÞ
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qgi ¼ L11

1

T g2

oT g

oxi
þ L12

1

T l2

oT l

oxi
; ð59cÞ

qli ¼ L13

1

T g2

oT g

oxi
þ L14

1

T l2

oT l

oxi
; ð59dÞ

Phg � P ¼ L01

1

T g

owg
i

oxi
þ L02

1

T l

owl
i

oxi
þ L03

T g � T l

T gT l
þ L04

lg

T g

�
� ll

T l

�
; ð59eÞ

Phl � P ¼ L05

1

T g

owg
i

oxi
þ L06

1

T l

owl
i

oxi
þ L07

T g � T l

T gT l
þ L08

lg

T g

�
� ll

T l

�
; ð59fÞ

d/g

dt
¼ L09

1

T g

owg
i

oxi
þ L010

1

T l

owl
i

oxi
þ L011

T g � T l

T gT l
þ L012

lg

T g

�
� ll

T l

�
; ð59gÞ

dcg

dt
¼ L013

1

T g

owg
i

oxi
þ L014

1

T l

owl
i

oxi
þ L015

T g � T l

T gT l
þ L016

lg

T g

�
� ll

T l

�
: ð59hÞ

The forces in Eqs. (59a) and (59b) are odd and in Eqs. (59c)–(59f) are even, and for this reason the
Onsager–Casimir reciprocal relations impose the conditions

L22 ¼ L23; L12 ¼ L13; ð60a;bÞ
and

L02 ¼ L05; L03 ¼ L09; L04 ¼ L013; L07 ¼ L010; L08 ¼ L014; L012 ¼ L015: ð61a–fÞ
Some phenomenological coefficients have a well known interpretation for example an expression
of the thermal conductivity, L13 � �kgT g2 , an expression of the viscosity, L22 � �gT l, or an ex-
pression of the bulk viscosity, L01 � �1T g, etc. What might be surprising for a reader is that the
constitutive equations describing the generalised thermodynamic fluxes for a separate phase de-
pend on the conjugate forces for both phases. This should be considered as a consequence of the
nature of the two-fluid model which consists in that in any point of the continuum domain there
are two separate phases.

8. Simplified form: the homogeneous models

Homogeneous models derived from the two-fluid model (HTFM) as well as from the mixture
model (HMM) can be simplified. According to the assumptions made, we can consider the ho-
mogeneous non-equilibrium two-fluid model (HNETFM) or the homogeneous equilibrium two-
fluid model (HETFM) on the one hand, and the homogeneous non-equilibrium mixture model
(HNEMM) or the homogeneous equilibrium mixture model (HEMM) on the other hand.

In a drastically simplified version of the two-fluid model (HTFM) (equilibrium or not), we can
neglect the phase slip resulting in that

wg
i ¼ wl

i ¼ wi; ð62Þ
and consequently

~wwa
i ¼ 0: ð63Þ
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Another assumption is that we base on the reference temperature Tref introduced in Section 3,
instead of setting two different temperatures of the liquid and vapour in the Gibbs equation.

Further, we assume:

Phg ¼ Phl ¼ Ph; ð64Þ
and we define:

~PPv
ij ¼ /g ~PPvg

ij þ /l ~PPvl

ij ; ð65Þ

qi ¼ /gqgi þ /lqli; ð66Þ
Y ¼ cgY g þ clY l: ð67Þ

This set of assumptions constitute the homogeneous two-fluid model (HTFM) of the two-phase
system. HTFM is different from HMM as we will see further on.

Then the entropy balance equation (53) is reduced to the not surprising equation:

ds
dt

¼ ðsg � slÞ dcg

dt
� 1

q

o qi
Tref

oxi
�

Pv
ij

qTref

owi

oxj
� qi

qT 2
ref

oTref

oxi
� 1

Tref

ðlg � llÞ dcg

dt
þ Y

Tref

: ð68aÞ

The above equation can be expressed in terms of the entropy flux J s
i , the entropy production rate r

and the reversible entropy source w
ds
dt

¼ � 1

q
oJ s

i

oxi
þ r þ w; ð68bÞ

where

w ¼ ðsg � slÞdcg

dt
þ Y

Tref

; ð68cÞ

J s
i ¼

qi

Tref

; ð68dÞ

and

r ¼ �
P
_v

ij

qTref

owi

oxj
� qi

qT 2
ref

oT
oxi

� 1

Tref

ðlg � llÞ dcg

dt
� 1

qTref

ðPh � P Þ owi

oxi
: ð68eÞ

As mentioned above, the two-fluid model is not reduced to the homogeneous mixture model even
if the simplifications (62)–(67), that are valid for HMM, are introduced. The reason is the fun-
damental assumption for the two-fluid model consisting on that in any point of the two-phase
domain there are two separate phases of liquid and vapour. In the case of HMM that condition is
not satisfied because one assumes coexisting two phases in any point of the field satisfying the
equation of state described by the specific entropy s ¼ slcl þ sgcg, the specific internal energy
u ¼ ulcl þ ugcg, the specific volume v ¼ vlcl þ vgcg and the dryness fraction c ¼ cg. The equation of
state is expressed as

s ¼ sðu; v; cÞ: ð69Þ
Equations of mass, momentum and energy balance describing HMM take a specific form of
equations (20), (27) and (36) corresponding to the mixture of two-phases in any point of the
system. These equations look like those describing a single phase system, namely, mass balance
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dq
dt

þ q
owi

oxi
¼ 0; ð70aÞ

or

q
dv
dt

þ owi

oxi
¼ 0; ð70bÞ

momentum balance

q
dwi

dt
¼ gi �

oPik

oxk
; ð71Þ

and energy balance

q
du
dt

¼ �Pik
owi

oxk
� oqi

oxi
þ qY : ð72Þ

The Gibbs equation for the two-phase homogeneous system reads

Tref

ds
dt

¼ du
dt

þ P
dv
dt

� ðlg � llÞ dc
dt

: ð73Þ

Substituting du=dt from (72), dv=dt from (70b) and making use of expressions (42a)–(42c) we can
rewrite (73) into a form well known in the CIT:

qTref

ds
dt

¼ �P
_v

ik

owi

oxk
þ ðP � PhÞ owi

oxi
� oqi

oxi
� ðlg � llÞ dc

dt
þ qY : ð74Þ

Eq. (74) is different Eq. (68a) because it does not contain a term responsible for the reversible
source of the entropy ðsg � slÞðdcg=dtÞ. The interesting thing is that the entropy production rate
for the HMM is identical as for the HTFM described by (68e). Consequently to that the con-
stitutive equations derived from CIT for both HMM and HTFM are the same.

9. Extended irreversible thermodynamics (EIT) for a two-phase system

Similarly to CIT, the EIT can also be applied to describe two-phase systems. For the simplicity
we confine our analysis to HMM. The analysis starts with the postulate of the extended form of
the state equation, compared to Eq. (69), namely

s ¼ sðu; v; cg; Pv; qi; P
_v

ij; _cc
gÞ; ð75Þ

where _ccg ¼ dcg=dt. Eq. (75) contains the generalised thermodynamic fluxes coming from CIT
which give rise to additional entropy productions due to phase change processes. Proceeding
further with the lines of the algorithm developed earlier for single-phase systems, let us write the
Gibbs equation in an extended form
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ds ¼ os
ou

� �
a1

duþ os
ov

� �
b1

dv þ os
oq

� �
c1

� dqþ os
oPv

� �
d1

dPv þ os
ocg

� �
e1

dcg þ os

oP
_v

 !
f1

: dP
_v

þ os
o _ccg

� �
g1

d _ccg: ð76Þ

Then, by analogy to the single-phase system, definitions of the partial derivatives can be found

os
ou

� �
a1¼v;cg;q;Pv;P

_v
; _ccg
,T�1ðu; v; cg; q; Pv; P

_v

; _ccgÞ; ð77Þ

os
ov

� �
b1¼u;cg;q;Pv;P

_v
; _ccg
,T�1Pðu; v; cg; q; Pv; P

_v

; _ccgÞ; ð78Þ

os
oq

� �
c1¼u;v;cg;Pv;P

_v
; _ccg
,T�1va1ðu; v; cg; q; Pv; P

_v

; _ccgÞ; ð79Þ

os
oPv

� �
d1¼u;v;cg;q;P

_v
; _ccg
,� T�1va01ðu; v; c; q; Pv; P

_v

; _ccgÞ; ð80Þ

os
ocg

� �
e1¼u;v;q;Pv P

_v
; _ccg
,� T�1va02ðu; v; c; q; Pv; P

_v

; _ccgÞ; ð81Þ

os

oP
_v

 !
f1¼u;v;cg;q;Pv; _ccg

,� T�1va
_

2ðu; v; cg; q; Pv; P
_v

; _ccgÞ; ð82Þ

os
o _ccg

� �
e1¼u;v;cg;q;Pv P

_v
,� T�1va03ðu; v; cg; q; Pv; P

_v

; _ccgÞ: ð83Þ

The above definitions contain quantities a1, a0i and a
_

2 of a vectorial, scalar and tensorial char-
acter, respectively. These quantities can have very complex forms. Assuming the most simple
linear form for these coefficients,

a1 ¼ a10q; a
_

2 ¼ a21P
_v

; a01 ¼ a001Pv and a03 ¼ a002 _cc
g; ð84Þ

and placing them into Eq. (76), then taking into account conservation equation for HMM, the
generalised Gibbs equation can be obtained

_ss ¼ �T�1r � q� T�1Pvr � w� T�1ðlg � llÞ _ccg � T�1P
_v

: V
_

� T�1a001Pv _PPv � T�1a10q � _qq� T�1a21P
_v

: ðP
_v

Þ� � T�1a002 _cc
g d _cc

g

dt
: ð85Þ

The entropy flux for the two-phase medium is assumed extended by several terms including one
connected with the phase change,

Js ¼ T�1qþ b01P
vqþ b10P

_v

� qþ b02 _cc
gq ð86Þ
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where coefficients b are functions of u, v, cg

b ¼ bðu; v; cgÞ: ð87Þ
Placing the expression with the entropy flux divergences ðoJs

i =oxiÞ into Eq. (85), the entropy
production sources can be rewritten as

r ¼ q � ðrT�1 � T�1a10 _qqþ b10r � P
_v

þ b01rPv þ e1Pvrb01 þ e2P
_v

� rb10 þ b02r _ccg þ e3 _cc
grb02Þ

þ Pv
h
� T�1r � w� T�1a001

_PPv þ ð1� e1Þq � rb01 þ b01r � q
i

þ _ccg
"
� T�1ðlg � llÞ � T�1a002

d _ccg

dt
þ b02r � qþ ð1� e3Þq � rb02

#

þ P
_v

�
�
� T�1V

_

� T�1a21ðP
_v

Þ� þ b10ðr
_

qÞs þ ð1� e2Þðqr
_

b10Þ
s
�
: ð88Þ

Assuming that the coefficients b are constant and introducing coefficients u to calibrate the
evolution equations to the laws of physics, in particular the second law of thermodynamics, and
making use of the Curie principle on cross effects for scalar fluxes Pv and _ccg, and introducing
further simplification (see Bilicki, 2001) the evolution equations describing the generalised ther-
modynamic fluxes can be presented in the form

rT�1 � T�1a10 _qq ¼ u10q; ð89Þ
�T�1v1ðlg � llÞ � T�1r � w� T�1a001

_PPv ¼ u01P
v; ð90Þ

T�1v2r � w� T�1ðlg � llÞ � T�1a002

d _ccg

dt
¼ u001 _cc

g; ð91Þ

�T�1V
_

� T�1a21ðP
_v

Þ� ¼ u21P
_v

: ð92Þ
Among these constitutive equations the most interesting is Eq. (91) providing the gradient of the
dryness fraction _ccg ¼ dcg=dt and the second derivatives of cg with respect time and space.

10. Examples of application

10.1. Rapid depressurisation

The application of CIT or EIT to model a given two-phase system needs the introduction some
appropriate approximations or even transformations of the constitutive equations (59a)–(59f) or
(89)–(92), respectively. As a first example we have selected an interesting phenomenon occurring
during a rapid depressurisation of cold water at temperature of 21 �C from 80 bar to the at-
mospheric pressure. The data we use come from the experiments carried out by Lienhard�s group
(Borkar et al., 1977).

The description of rapid depressurisation becomes complex when both phase change and
pressure difference Pv 6¼ 0 (Eq. (42b)) are taken into consideration. In this case, both irreversible
processes leading to generalised fluxes _cc and Pv are, in accordance with the Curie principles (Kestin,
1979), mutually coupled, because the thermodynamic incentives giving rise to these fluxes are both
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zero-rank tensors as it is shown in Section 7. Moreover it seems reasonable to restrict the modelling
to 1D, and to homogeneous model. Then, with the CIT approach, we have to combine equations
(59e) and (59f) into one constitutive equation for the mixture Eq. (93b). We further assume that
L03 ¼ L07 ¼ 0. In Eq. (59f) we also combine the first two terms, and we assume L015 ¼ 0. This leads
to Eq. (93a). Therefore, both processes are described by the following coupled equations

dc
dt

¼ L11ðll � lgÞ þ L12

owi

ozi
; ð93aÞ

Pv ¼ L21ðll � lgÞ þ L22

owi

ozi
; ð93bÞ

or, if the postulates of EIT for Pv are taken into account, Eq. (90) becomes Eq. (94b):

dc
dt

¼ L11ðll � lgÞ þ L12

owi

ozi
; ð94aÞ

hP
dPv

dt
þ Pv ¼ L21ðll � lgÞ þ L22

owi

ozi
: ð94bÞ

Eqs. (94a) and (94b) appear to form a more legitimate description of the process than Eqs. (93a)
and (93b) by virtue of their evolutional character. Indeed, only the first equation from Eqs. (93a)
and (93b) possesses the evolutional character, thus describing the history of the dryness fraction
since the inception of the phase change process, the other equation not attempting to account for
the dynamics of the process.

The theory presented here was compared with experimental results obtained by Borkar et al.
(1977). In the experiment, a depressurisation of cold water during outflow from a pressurised
channel was observed. In the present calculation, the 1D HMM was used:

oq
ot

þ oðqwÞ
ot

¼ � qw
A

dA
dz

; ð95Þ

q
dw
dt

¼ � oPh

oz
þ o

oz
4

3
g
dw
dz

� �
� sw

C
A
; ð96Þ

q
dh
dt

� dP
dt

¼ sww
C
A
þ ðP � PhÞ ow

oz
þ 4

3
g

� �
dw
dz

� �2

þ o

oz
k
oTS

oz

� �
; ð97Þ

where TS is the saturation temperature, A the cross sectional area of the channel, C its perimeter,
sw ¼ 1

2
fqw2=2 the shear stress at the wall, f the Fanning friction factor, k and g are the operative

thermal conductivity and viscosity respectively. These last parameters have been introduced in
Bilicki et al. (1996) and Kwidzinski and Bilicki (1998). The above equations are supplemented
with the evolution equations (94a) and (94b) after certain modifications. Namely, it is assumed
that the measure of the non-equilibrium expressed in Eq. (94a) by a difference of the chemical
potentials, ll � lg, may be substituted by the difference of actual and equilibrium dryness frac-
tions, c � �cc. Moreover, it is assumed that L11 ¼ �1=c, L21 ¼ 0 and L12 ¼ L22 ¼ f where hc is a
relaxation time for the evolution of dryness fraction and f is the bulk viscosity. The calculations of
the rapid depressurisation were performed with the following values for the model parameters:
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f ¼ 0:008, k ¼ 5 W/mK, g ¼ 0:1 kg/m s, hc ¼ 10�2 s, hP ¼ 10�4 s. The results illustrated in Fig. 1
show a good agreement between the proposed theory and the experiments.

10.2. Wall shear stress in transient single- and two-phase flows

A second example is proposed in Kucienska et al. (submitted for publication). The experiments
were made for the flow of air in a tube at the atmospheric pressure. The tube has a length of 1.13
m and an internal diameter D ¼ 32 mm. The initial mass flow rate is 0.04 kg s�1. Water hammer is
caused by the fast closure of a valve at the downstream end of the pipe. According to EIT, the
state equation is given by:

s ¼ sðu;q;~ssÞ; ð98Þ
where~ss is the wall shear stress introduced here as a 1D dissipative flux. Its constitutive equation is
found to be:

~ss ¼ f
qw~ww
2

þ f
q2wDT

4

os
os2

d~ss
dt

¼~sss � h
d~ss
dt

: ð99Þ

Eq. (99) is a 1D approximation of Eq. (92). It is shown that Eq. (99) can be transformed into

~ss ¼ f
qw~ww
2

þ kqD
4

d~ww
dt

; ð100Þ

where k a negative constant. The effect of the second term of the RHS. is to increase the friction
during the deceleration and to decrease it during acceleration, but the effect of the additional
friction term during deceleration is much greater than during acceleration which results in overall
greater friction over the whole period of the transient than in steady state. A comparison between
this model and the experiment is shown in Fig. 2.

The application of Eq. (99) for two-phase flow shows that the unsteady friction model based on
EIT gives more pressure damping and a slight negative shear stress in comparison with similar
calculations made with the steady-state shear stress model. Flashing occurs when the pressure
wave comes back to the valve. Due to the smaller pressure amplitude, the void fraction obtained
with the unsteady friction model is significantly smaller than with the steady one.

Fig. 1. Comparison of pressure profiles observed in Lienhard�s experiment (Borkar et al., 1977) and calculated with the

present theory.
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11. Conclusions

As expected, the system of equations describing a two-phase system, though complicated, is a
closed one. At least in principle, it is possible to determine all dependent field variables as
functions of position and time by solving the full set of partial differential equations, subject to the
approximate boundary and initial conditions. It is possible to derive the constitutive equations if
we rely on the philosophy and methods based on the Thermodynamics of Irreversible Processes,
both classical (CIT) or extended (EIT). It is worth noting that EIT applied here offers the de-
scription of an evolution of the dryness fraction of the two-phase system which depends on a
second derivatives with respect time and space.

The phenomenological coefficients Lab introduced in Eqs. (59)–(61) and a, u, v in Eqs. (89)–(92)
represent unknown quantities, because all past experimentation has been carried out in terms of
more heuristic theories. Consequently, at this stage, nothing can be said about them, except that
their values, all functions of the thermodynamic parameters of the state, must vary from flow
pattern to flow pattern. Strictly speaking, they must vary even for a class of flows characterised by
the same topological configuration, except that here we may expect that a suitably conceived
ensemble averaging will provide us with an adequate approximation.
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